高防服务器

python的numpy模块使用实例分析


python的numpy模块使用实例分析

发布时间:2022-05-19 16:45:14 来源:高防服务器网 阅读:80 作者:iii 栏目:开发技术

今天小编给大家分享一下python的numpy模块使用实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

    Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展。Numpy是python中众多机器学习库的依赖,这些库通过Numpy实现基本的矩阵计算。

    Numpy支持高阶、大量计算的矩阵、向量计算,与此同时还提供了较为丰富的函数。此外,Numpy基于更加现代化的编程语言–python,python凭借着开源、免费、灵活性、简单易学、工程特性好等特点风靡技术圈,已经成为机器学习、数据分析等领域的主流编程语言。

    一、array类型

    numpy的array类型是该库的一个基本数据类型,这个数据类型从字面上看是数组的意思,也就意味着它最关键的属性是元素与维度,我们可以用这个数据类型来实现多维数组。

    因此,通过这个数据类型,我们可以使用一维数组来表示向量,二维数组表示矩阵,并以此类推以用来表示更高维度的张量。

    1.1array类型的基本使用

    import numpy as np  # 通过np.array()方法创建一个名为array的array类型,参数是一个list  array = np.array([1, 2, 3, 4])  print(array)  # 结果为:[1 2 3 4]  # 获取array中元素的最大值  print(array.max())  # 结果为:4  # 获取array中元素的最小值  print(array.min())  # 结果为:1  # 获取array中元素的平均值  print(array.mean())  # 结果为:2.5  # 直接将array乘以2,python将每个元素都乘以2  print(array*2)  # 结果为:[2 4 6 8]  print(array+1)  # 结果为:[2 3 4 5]  print(array/2)  # 结果为:[0.5 1.  1.5 2. ]  # 将每一个元素都除以2,得到浮点数表示的结果  print(array % 2)  # 结果为:[1 0 1 0]  array_1 = np.array([1, 0, 2, 0])  # 获取该组数据中元素值最大的那个数据的首个索引,下标从0开始  print(array_1.argmax())  # 结果为:2

    通过上面的代码,我们可以了解到Numpy中array类型的基本使用方法。

    我们可以看到,array其实是一个类,通过传入一个list参数来实例化为一个对象,从而实现了对数据的封装。

    1.2对更高维度数据的处理

    import numpy as np  # 创建一个二维数组,用以表示一个3行2列的矩阵  array = np.array([[1, 2], [3, 4], [5, 6]])  print(array)  # 查看数据的维度属性,下面输出结果(3,2)表示3行2列  print(array.shape)  # 结果为:(3, 2)  # 查看元素个数  print(array.size)  # 结果为:6  # 查看元素最大值的索引  print(array.argmax())  # 结果为:5  # 将shape为(3,2)的array转换为一行表示  print(array.flatten())  # 结果为:[1 2 3 4 5 6]  # 我们可以看到,flatten()方法是将多维数据“压平”为一维数组的过程  #将array数据从shape为(3,2)的形式转为(2,3)的形式  print(array.reshape(2, 3))  '''结果为:  [[1 2 3]   [4 5 6]]'''  #将array数据从shape为(3,2)的形式转为(1,6)的形式  print(array.reshape(1, 6))  # 结果为:[[1 2 3 4 5 6]]

    高级一点的就是flatten()和reshape()函数了,需要注意下reshape()返回的结果是array类型

    1.3Numpy创建特殊类型的array类型

    1.3.1生成全为0或全为1的array
    import numpy as np  # 生成所有元素为  array_zeros = np.zeros((2, 3, 3))  print(array_zeros)  '''结果为:  [[[0. 0. 0.]    [0. 0. 0.]    [0. 0. 0.]]   [[0. 0. 0.]    [0. 0. 0.]    [0. 0. 0.]]]  '''  array_ones = np.ones((2, 3, 3))  print(array_ones)  '''结果为:  [[[1. 1. 1.]    [1. 1. 1.]    [1. 1. 1.]]   [[1. 1. 1.]    [1. 1. 1.]    [1. 1. 1.]]]  '''  print(array_ones.shape)  # 结果为:(2, 3, 3)

    注意:如果将(2,3,3)改为(3,3)

    array_zeros = np.zeros((3, 3))print(array_zeros)'''结果为:[[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]]'''

    其生成的是3行3列的array 

    1.3.2np.arrange()和np.linspace()

    arange([start,] stop[, step,], dtype=None, , like=None)

    返回给定间隔内均匀分布的值。值在半开区间“[start, stop)“(换句话说,包括`start`但不包括`stop`的区间)内生成。对于整数参数,该函数等效于 Python 内置的 `range` 函数,但返回的是 ndarray 而不是列表。当使用非整数步长(例如 0.1)时,结果通常会不一致。对于这些情况,最好使用 `numpy.linspace`。

    linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)

    在指定的时间间隔内返回均匀分布的数字。返回“num”个均匀分布的样本,在区间 [`start`, `stop`] 上计算。 

    start:序列的起始值。

    stop:序列的结束值,除非 `endpoint` 设置为 False。在这种情况下,序列由除最后一个“num + 1”个均匀分布的样本之外的所有样本组成,因此排除了“stop”。请注意,当 `endpoint` 为 False 时,步长会发生变化。

    num=50:要生成的样本数。默认值为 50。必须为非负数。

    endpoint=True:如果为真,`stop` 是最后一个样本。否则,不包括在内。默认为真。

    retstep=False:如果为 True,则返回 (`samples`, `step`),其中 `step` 是样本之间的间距。

    dtype=None:输出数组的类型。如果 `dtype` 没有给出,数据类型是从 `start` 和 `stop` 推断出来的。推断的 dtype 永远不会是整数;即使参数会产生一个整数数组,也会选择`float`。

    因此以下代码就很容易理解了

    # 生成一个array,从0递增到10,步长为1  array_arange = np.arange(10)  print(array_arange)  # 结果为:[0 1 2 3 4 5 6 7 8 9]  # 生成一个array,从0递增到10,步长为2  array_arange_1 = np.arange(0, 10, 2)  print(array_arange_1)  # 结果为:[0 2 4 6 8]  # 生成一个array,将0-10等分为5部分  array_linspace = np.linspace(0, 10, 5)  print(array_linspace)  # 结果为:[ 0.   2.5  5.   7.5 10. ]

    1.4Numpy基础计算演示

    import numpy as np  # 取绝对值  print(np.abs([1, -2, 3, -4]))  # [1 2 3 4]  # 求正弦值  print(np.sin(np.pi/2))  # 1.0  # 求反正切值  print(np.arctan(1))  # 0.7853981633974483  # 求e的2次方  print(np.exp(2))  # 7.38905609893065  # 求2的三次方  print(np.power(2, 3))  # 8  # 求向量[1,2]与[3,4]的点积  print(np.dot([1, 2], [3, 4]))  # 11  # 求开方  print(np.sqrt(4))  # 2.0  # 求和  print(np.sum([1, 2, 3, 4]))  # 10  # 求平均值  print(np.mean([1, 2, 3, 4]))  #2.5   # 求标准差  print(np.std([1, 2, 3, 4]))  # 1.118033988749895

    二、线性代数相关 

    前面我们已经了解到array类型及其基本操作方法,了解array类型可以表示向量、矩阵和多维张量。

    线性代数计算在科学计算领域中非常重要,因此接下来了解以下Numpy提供的线性代数操作

    import numpy as np  vector_a = np.array([1, 2, 3])  vector_b = np.array([2, 3, 4])  # 定义两入向量vector_a与vector_b  m = np.dot(vector_a, vector_b)  # 将两个向量相乘,在这里也就是点乘,结果为20  print(m)  n = vector_a.dot(vector_b)  print(n)  # 将vector_a与vector_b相乘,结果为20  o = np.dot(vector_a, vector_b.T)  print(o)  '''  将一个行向量与一个列向量叉乘的结果相当于将两个行向量求点积,这里测试了dot()方法。其中array类型的T()方法表示转置。  测试结果表明:  dot()方法默认对两个向量求点积。对于符合叉乘格式的矩阵,自动进行又乘。'''  # 我们看一下下面这个例子:  matrix_a = np.array([[1, 2], [3, 4]])  # 定义一个2行2列的方阵  matrix_b = np.dot (matrix_a, matrix_a.T)  # 这里将该方阵与其转置叉乘,将结果赋予matrix_b变量  print(matrix_b)  '''结果为:  array([[5,11],  [11,25]])'''  p = np.linalg.norm([1, 2])  print(p)  # 求一个向量的范数的值,结果为2.2360679774997898  # 如果norm()方法没有指定第2个参数,则默认为求2范数  np.linalg.norm([1, -2], 1)  # 指定第2个参数值为1,即求1范数。我们在前面介绍过,1范数的结果为向量中各元素绝对值之和,结果为3.0  q = np.linalg.norm([1, 2, 3, 4], np. inf)  print(q)  # 求向量的无穷范数,其中np.inf表示正无穷,也就是向量中元素值最大的那个,其结果为4.0  r = np.linalg .norm([1, 2, 3, 4], -np.inf)  print(r)  # 同理,求负无穷范数的结果为1, 也就是向量中元素的最小值  # 求行列式  s = np.linalg.det(matrix_a)  print(s)  # -2.0000000000000004  t = np.trace(matrix_a)  print(t)  # 求矩阵matrix_a的迹,结果为5  u = np.linalg.matrix_rank(matrix_a)  # 求矩阵的秩,结果为2  print(u)  v = vector_a * vector_b  # 使用*符号将两个向量相乘,是将两个向量中的元素分别相乘,也就是我们所讲到的哈达马乘积  print(v)  # [ 2  6 12]  w = vector_a ** vector_b  print(w)  # 使用二元运算符**对两个向量进行操作,结果为array([1, 8, 81],dtype = int32)  # 表示将向量vector. a中元素对应vector. b中的元素值求幂运算。例如最终结果[1,8,81]可以表示为[1*1,2*2*2,3*3*3*3]  # 求逆矩阵  z = np.linalg.inv(matrix_a)  print(z)  '''  [[-2.   1. ]   [ 1.5 -0.5]]'''

    三、矩阵的高级函数-随机数矩阵

    Numpy除了为我们提供常规的数学计算函数和矩阵相关操作之外,还提供很多功能丰富的模块,随机数模块就是其中一部分。

    利用随机数模块可以生成随机数矩阵,比python自带的随机数模块功能还要强大。

    import numpy as np  # 设置随机数种子  np.random.seed()  # 从[1,3)中生成一个整型的随机数,连续生成10个  a = np.random.randint(1, 3, 10)  print(a)  # [1 1 1 2 1 1 1 1 2 2]  # 若要连续产生[1,3}之间的浮点数,可以使用以下方法:  # ①  b = 2*np.random.random(10)+1  print(b)  '''  [2.88458839 2.07004167 2.80814156 1.83247535 2.33649809 2.62763357   2.0549351  2.33464915 1.70562208 2.66257726]'''  # ②  c = np.random.uniform(1, 3, 10)  print(c)  '''  [1.76967412 1.37703868 2.48838004 1.45986254 2.04487418 2.51107658   1.25673115 1.31416097 2.56218317 2.90575438]'''  # 生成一个满足正态分布(高斯分布)的矩阵,其维度是4*4  d = np. random.normal(size=(4, 4))  print(d)  '''  [[ 0.76164366  0.11588368  0.49221559 -0.28222691]   [ 0.47638143 -0.21197541 -1.0776362   0.49241666]   [ 0.26038756 -0.20406522  1.11210954 -1.191425  ]   [ 0.58255677  1.84047863 -0.21366512 -0.85425828]]'''  # 随机产生10个n=5、p=0.5的二项分布数据:  e = np.random.binomial(n=5, p=0.5, size=10)  print(e)  # [1 1 5 2 1 2 1 2 1 2]  # 产生一个0到9的序列  data = np.arange(10)  print(data)  # [0 1 2 3 4 5 6 7 8 9]  # 从data数据中随机采集5个样本,采集过程是有放回的  f = np.random.choice(data, 5)  print(f)  # [1 7 3 3 4]  # 从data数据中随机采集5个样本,采集过程是没有放回的  g = np.random.choice(data, 5, replace=False)  print(g)  # [8 9 1 5 0]  # 对data进行乱序  h = np.random.permutation(data)  print(h)  # [8 5 3 9 2 0 4 6 1 7]  # 对data进行乱序,并替换为新的data  np.random.shuffle(data)  print(data)  # [9 7 0 3 8 5 2 1 4 6]

    以上就是“python的numpy模块使用实例分析”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注高防服务器网行业资讯频道。

    [微信提示:高防服务器能助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。

    [图文来源于网络,不代表本站立场,如有侵权,请联系高防服务器网删除]
    [