高防服务器

matplotlib如何实现scale刻度


matplotlib如何实现scale刻度

发布时间:2021-11-28 16:11:31 来源:高防服务器网 阅读:77 作者:小新 栏目:云计算

这篇文章主要介绍 matplotlib如何实现scale刻度 ,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

1.5. 对数或者其他非线性坐标轴
使用plt.xscal()来改变坐标轴的刻度

import numpy as np  import matplotlib.pyplot as plt  from matplotlib.ticker import NullFormatter # useful for `logit` scale# Fixing random state for reproducibilitynp.random.seed(19680801)# make up some data in the interval ]0, 1[y = np.random.normal(loc=0.5, scale=0.4, size=1000)  y = y[(y > 0) & (y < 1)]  y.sort()  x = np.arange(len(y))# plot with various axes scalesplt.figure(1)# linearplt.subplot(221)  plt.plot(x, y)  plt.yscale('linear')  plt.title('linear')  plt.grid(True)# logplt.subplot(222)  plt.plot(x, y)  plt.yscale('log')  plt.title('log')  plt.grid(True)# symmetric logplt.subplot(223)  plt.plot(x, y - y.mean())  plt.yscale('symlog', linthreshy=0.01)  plt.title('symlog')  plt.grid(True)# logitplt.subplot(224)  plt.plot(x, y)  plt.yscale('logit')  plt.title('logit')  plt.grid(True)# Format the minor tick labels of the y-axis into empty strings with# `NullFormatter`, to avoid cumbering the axis with too many labels.plt.gca().yaxis.set_minor_formatter(NullFormatter())# Adjust the subplot layout, because the logit one may take more space# than usual, due to y-tick labels like "1 - 10^{-3}"plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,  wspace=0.35)  plt.show()

以上是“ matplotlib如何实现scale刻度 ”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注高防服务器网行业资讯频道!

[微信提示:高防服务器能助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。

[图文来源于网络,不代表本站立场,如有侵权,请联系高防服务器网删除]
[