hadoop如何自定义格式化输出
hadoop如何自定义格式化输出
发布时间:2021-12-09 16:25:34 来源:高防服务器网 阅读:64 作者:小新 栏目:大数据
这篇文章给大家分享的是有关hadoop如何自定义格式化输出的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
import java.io.IOException; import java.net.URI; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class CustomizeOutputFormat { static final Log LOG = LogFactory.getLog(CustomizeOutputFormat.class); public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(CustomizeOutputFormat.class); job.setMapperClass(CustMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); //此处这只自定义的格式化输出 job.setOutputFormatClass(CustOutputFormat.class); String jobName = "Customize outputformat test!"; job.setJobName(jobName); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean b = job.waitForCompletion(true); if(b) { LOG.info("Job "+ jobName +" is done."); }else { LOG.info("Job "+ jobName +"is going wrong,now exit."); System.exit(0); } } } class CustMapper extends Mapper<LongWritable, Text, Text, Text>{ String[] textIn = null; Text outkey = new Text(); Text outvalue = new Text(); @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context) throws IOException, InterruptedException { /** * 假设文件的内容为如下: * boys girls * firends goodbye * down up * fly to * neibors that * */ textIn = value.toString().split("t"); outkey.set(textIn[0]); outvalue.set(textIn[1]); context.write(outkey, outvalue); } } //自定义OutoutFormat class CustOutputFormat extends FileOutputFormat<Text, Text>{ @Override public RecordWriter<Text, Text> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException { //获得configration Configuration conf = context.getConfiguration(); //获得FileSystem FileSystem fs = FileSystem.newInstance(conf); //获得输出路径 Path path = CustOutputFormat.getOutputPath(context); URI uri = path.toUri(); //创建两个文件,得到写入流 FSDataOutputStream foa = fs.create(new Path(uri.toString()+"/out.a")); FSDataOutputStream fob = fs.create(new Path(uri.toString()+"/out.b")); //创建自定义RecordWriter 传入 两个流 CustRecordWriter rw = new CustRecordWriter(foa,fob); return rw; } class CustRecordWriter extends RecordWriter<Text, Text>{ FSDataOutputStream foa = null; FSDataOutputStream fob = null; CustRecordWriter(FSDataOutputStream foa,FSDataOutputStream fob){ this.foa = foa; this.fob = fob; } @Override public void write(Text key, Text value) throws IOException, InterruptedException { String mText = key.toString(); //根据可以长度的不同分别输入到不同的文件 if(mText.length()>=5) { foa.writeUTF(mText+"t"+value.toString()+"n"); }else { fob.writeUTF(mText+"t"+value.toString()+"n"); } } @Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { //最后将两个写入流关闭 if(foa!=null) { foa.close(); } if(fob!=null) { fob.close(); } } } } //使用MultipleInputs,c处理多个来源的文件 package hgs.multipuleinput; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.MultipleInputs; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import hgs.custsort.SortBean; import hgs.custsort.SortDriver; import hgs.custsort.SortMapper; import hgs.custsort.SortReducer; public class MultipuleInputDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SortDriver.class); job.setMapperClass(SortMapper.class); job.setReducerClass(SortReducer.class); job.setOutputKeyClass(SortBean.class); job.setOutputValueClass(NullWritable.class); MultipleInputs.addInputPath(job, new Path("/sort"), TextInputFormat.class,SortMapper.class); MultipleInputs.addInputPath(job, new Path("/sort1"), TextInputFormat.class,SortMapper.class); //FileInputFormat.setInputPaths(job, new Path("/sort")); FileOutputFormat.setOutputPath(job, new Path("/sortresult")); System.exit(job.waitForCompletion(true)==true?0:1); } }
感谢各位的阅读!关于“hadoop如何自定义格式化输出”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
[微信提示:高防服务器能助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。
[图文来源于网络,不代表本站立场,如有侵权,请联系高防服务器网删除]
[